A Rank Inequality for the Tate Conjecture over Global Function Fields

نویسنده

  • CHRISTOPHER LYONS
چکیده

We present an observation of D. Ramakrishnan concerning the Tate Conjecture for varieties over a global function field (i.e., the function field of a smooth projecture curve over a finite field), which was pointed out during a lecture given at the AIM’s workshop on the Tate Conjecture in July 2007. The result is perhaps “known to the experts,” but we record it here, as it does not appear to be in print elsewhere. We use the global Langlands correspondence for the groups GLn over global function fields, proved by L. Lafforgue [Laf], along with an analytic result of H. Jacquet and J. Shalika [JS] on automorphic L-functions for GLn. Specifically, we use these to show (see Theorem 2.1 below) that, for a prime l , char k, the dimension of the subspace spanned by the rational cycles of codimension m on our variety in its 2m-th l-adic cohomology group (the so-called algebraic rank) is bounded above by the order of the pole at s = m + 1 of the associated L-function (the so-called analytic rank). The interest in this result lies in the fact that, with the exception of some special instances like certain Shimura varieties and abelian varieties which are potentially CM type, the analogous result for varieties over number fields is still unknown in general, even for the case of divisors (m = 1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Curves with Large Rank over Function Fields

We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptoti...

متن کامل

Conics over function fields and the Artin-Tate conjecture

We prove that the Hasse principle for conics over function fields is a simple consequence of a provable case of the Artin-Tate conjecture for surfaces over finite fields. Hasse proved that a conic over a global field has a rational point if and only if it has points over all completions of the global field, an instance of the so-called local-global or Hasse principle. The case of the rational n...

متن کامل

Explicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate Group

Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we explicitly compute Heegner points over ring class fields...

متن کامل

The Tate Conjecture for Powers of Ordinary Cubic Fourfolds over Finite Fields

Recently N. Levin proved the Tate conjecture for ordinary cubic fourfolds over finite fields. In this paper we prove the Tate conjecture for selfproducts of ordinary cubic fourfolds. Our proof is based on properties of so called polynomials of K3 type introduced by the author about a dozen years ago.

متن کامل

Ranks of Twists of Elliptic Curves and Hilbert’s Tenth Problem

In this paper we investigate the 2-Selmer rank in families of quadratic twists of elliptic curves over arbitrary number fields. We give sufficient conditions on an elliptic curve so that it has twists of arbitrary 2-Selmer rank, and we give lower bounds for the number of twists (with bounded conductor) that have a given 2-Selmer rank. As a consequence, under appropriate hypotheses we can find m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008